PH102 Tutorial Sheet 1 (Jan 02, 2015)
 Department of Physics, IIT Guwahati
 Professor Alika Khare \& Professor Pratima Agarwal

 Welcome to PH102 Tutorials

 Welcome to PH102 Tutorials Wish you all a Very Happy New Year Wish you all a Very Happy New Year This is a warm up tutorial

 This is a warm up tutorial}

1. Express the following vectors in Cartesian Coordinate system: $\overrightarrow{\boldsymbol{A}}=\rho z \sin \varphi \hat{\rho}+3 \rho \cos \varphi \hat{\varphi}+\rho \cos \varphi \sin \varphi \hat{k}$ and

$$
\overrightarrow{\boldsymbol{B}}=r^{2} \hat{r}+\sin \theta \hat{\varphi}
$$

2. Given a vector field: $\overrightarrow{\boldsymbol{D}}=r \sin \varphi \hat{\boldsymbol{r}}-\frac{1}{r} \sin \theta \cos \varphi \widehat{\boldsymbol{\theta}}+r^{2} \widehat{\boldsymbol{\varphi}}$

Determine:
(a) $\overrightarrow{\boldsymbol{D}}$ at $\mathrm{P}\left(10,150^{\circ}, 330^{\circ}\right)$
(b) The component of $\overrightarrow{\boldsymbol{D}}$ tangential to the spherical surface $\mathrm{r}=10$ at P
(c) A unit vector at P perpendicular to $\overrightarrow{\boldsymbol{D}}$ and tangential to the cone $\theta=150^{\circ}$
3. Let $\overrightarrow{\boldsymbol{H}}=5 \rho \sin \varphi \widehat{\boldsymbol{\rho}}-\rho z \cos \varphi \widehat{\boldsymbol{\varphi}}+2 \rho \widehat{\boldsymbol{k}}$

At point $\mathrm{P}\left(2,30^{\circ},-1\right)$, find:
(a) a unit vector along $\overrightarrow{\boldsymbol{H}}$
(b) the component of $\overrightarrow{\boldsymbol{H}}$ parallel to $\hat{\boldsymbol{\imath}}$
(c) the component of $\overrightarrow{\boldsymbol{H}}$ normal to $\rho=2$
(d) the component of $\overrightarrow{\boldsymbol{H}}$ tangential to $\varphi=30^{\circ}$
4. A vector field in "mixed" coordinate variables is given by
$\overrightarrow{\boldsymbol{G}}=\frac{x \cos \varphi}{\rho} \hat{\imath}+\frac{2 y z}{\rho^{2}} \hat{\jmath}+\left(1-\frac{x^{2}}{\rho^{2}}\right) \hat{k}$
Express $\overrightarrow{\boldsymbol{G}}$ completely in spherical system.
5. Consider the object shown in Figure 1. Calculate
(a) The distance BC , (b) the distance CD , (c) the surface area ABCD
(d) the surface area ABO , (e) the surface area AOFD

Fig 1

Fig 2
6. Write down the area elements (vector) for the curved and plane surfaces for an inverted Cone.
7. Compute the line integral of $\boldsymbol{V}=r \cos ^{2} \theta \hat{r}-r \cos \theta \sin \theta \hat{\theta}+3 r \hat{\varphi}$ around the path shown in Fig 2.
8. A Vector $\overrightarrow{\boldsymbol{G}}(\mathrm{r})$ is given as $\overrightarrow{\boldsymbol{G}}(\mathrm{r})=10 e^{-2 z}(\rho \hat{\rho}+\hat{k})$
determine $\oint \vec{G} \cdot \overrightarrow{d a}$ over the entire surface of the cylinder of unit radius and unit height.
9. A vector is given as $\overrightarrow{\boldsymbol{A}}=5 r \hat{\varphi}$ obtain the surface integration over a surface defined by $0<r<1$ and $-3<z<3, \varphi$ being constant.
10. A body is moved along the path as shown in figure 3 , under the force $\overrightarrow{\boldsymbol{A}}=2 \hat{\imath}-5 \hat{\jmath}$. The path between point a and b is a parabola given by $y=2 x^{2}$. (a) calculate the work done to move the body from point a and b along the parabolic path. (b) Calculate the work done to move the body from a to c and then to point b . (c) compare the results of above two parts.

Fig 3

